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Abstract

This paper studies the effects of changes in the carbon-based ecosystem on
a country’s output. We propose and estimate a dynamic production model in
which a country’s ecosystem, as measured by its reservoir of carbon in land
biomass and soils, enters explicitly as a productive input. Land use is the key
endogenous decision in the model. We characterize a country’s optimal land use
policy given its direct effects on the ecosystem, and the indirect feedback effects
from land sink absorption of atmospheric GHG concentrations. We estimate
the model’s land sink absorption rates and output elasticities with respect to
land use, fossil fuel emissions, and land carbon stock for 162 countries. Glob-
ally, a 1% decline in a country’s land carbon leads to an estimated 0.3% decline
in its GDP per year, even after it optimally adjusts its land use policy. We then
simulate the model to 2100 under four standard Representative Concentration
Pathway scenarios. In the simulations, developed countries experience higher
GDP growth by 2100 under low concentration scenarios. For these countries,
GDP initially grows faster in high concentration scenarios. By 2050 it declines
in high concentration scenarios but continues to grow in low ones. Developing
countries, by contrast, experience higher GDP growth under high concentration
scenarios throughout the century. Global growth in GDP is maximal under low
to moderate GHG concentration scenarios.
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1 Introduction

Studies of the effects of greenhouse gas emissions on economic outcomes are numer-
ous. The effects are typically quantified in a class of integrated assessment models
(IAMs) that incorporate an environmental damage function into a general equilib-
rium growth model[] Damage to output is postulated to be an increasing function
of global surface temperature. In turn, surface temperature increases with green-
house gas (GHG) concentrations from energy use. The estimated parameters of this
function are then used to calibrate the long run effects of climate change on outputE]

The damage function is a shorthand representation of an economy’s sensitivity
to changes in the ecosystem brought about by climate change. Viewed as a “capital
stock”, the ecosystem maintains the resiliency of a country’s economy by preserving
soil nutrients, preventing erosion, flooding, and habitat loss, acting as filtration sys-
tem for human and animal waste, and serving as a natural climate stabilizer (IPCC|
2014; Mcalpine and Wotton, [2009)).

This paper proposes and estimates a dynamic growth model where each country’s
policymakers account for the carbon based ecosystem. The ecosystem, comprising
the reservoir of un-extracted carbon contained in land biomass and soils, enters the
model explicitly as a productive input along with two others: fossil fuel consump-
tion and land use. The three inputs directly increase output. Our study focusses
on the indirect effects of fossil fuels and land use on the ecosystem. Namely, the
resulting increases in global atmospheric GHGs can lead to land carbon depletion,
consequently degrading a key productive input for GDP growth.

This feedback channel works through sink absorption or sequestration. Land
sink absorption, the ability of land biomass to absorb carbon from the atmosphere,
arises from a subtle combination of plant photosynthesis and respiration and ground
absorption of carbon. The process is not negligible. The world’s stock of carbon
biomass, both above and below ground, in 2010 was approximately 1260 Gt CO2e
(FAO| (2015)) and [Zomer et al. (2016])). The land sink flow for 2011 constituted
around 0.8% of the 2010 stock, excluding anthropogenic responses (Le Quere et al.)
2018)). All else equal, greater absorption capacity can increase the terrestrial stock
and reduce atmospheric GHGs. Thus, a land sink with greater absorption capacity
can, to some degree, reduce climate change and/or mitigate its effects.

'Recent economic studies and integrated assessment models of this type include Krusell and
Smith| (2009); [Dell, Jones, and Olken| (2012)); |Golosov et al.| (2014); |Acemoglu et al.| (2012); |Cai,
Judd, and Lontzek| (2012)); IPCC| (2014)); Burke, Hsiang, and Miguel (2015)); |Cai et al.| (2015);
Hsiang et al.| (2017)); Deryugina and Hsiang| (2017)); Nordhaus| (2018)), and many others.

“See [Nordhaus| (2013) for a more complete description.



The absorption capacity of the sinks, however, depends on the existing con-
centration of atmospheric GHGs. A number of studies indicate that increases in
atmospheric GHGs may initially increase, but would eventually decrease, the reab-
sorption rates of carbon into plant and soils (Hikosaka et al., 2006; Thomson et al.,
2008; Fernandez-Martinez et al., |2017; Raupach et al.; 2014; Xu, 2015; Feng et al.,
2015} Zheng et all 2018). At some point, high enough concentrations hinder the
capacity of the terrestrial ecosystem to absorb GHGs from the atmosphere. In the
extreme, sinks can turn negative: respiration and decomposition outweigh absorption
and photosynthesisE]

The paper posits and estimates a “sequestration” function from atmospheric
greenhouse gases to the country’s land sink. Using the data from 2018 Global Carbon
Project, the estimated coefficients of the function are statistically significant and are
consistent with a single peaked relationship between the GHG concentrations and
land sink.

Land use is the key endogenous policy decision in the model. It encompasses
a wide array of activities, including agriculture, forestry, freshwater fisheries, and
urban development. While integrated assessment climate models include a highly
developed energy sector, there are “far fewer land-use [climate] scenarios published
in the literature than emission or energy-use scenarios” (van Vuuren et al. 2011)).
Land use becomes central in our study precisely because optimal land use policies
must trade off immediate positive effects of land use and emissions against the longer
run negative consequences of diminished terrestrial carbon stocks.

An optimal land use policy for a country is a pair of state-contingent choices
on land emissions and atmospheric removals (from replanting, reseeding, etc) that
maximize discounted dynamic payoffs of its representative consumer. Externalities
arise because countries do not internalize the effects of their decisions on other coun-
tries’ local ecosystems. Nor can they fully internalize the indirect feedback of other
countries’ ecosystems on their own.

Optimal land policies are shown to exist and are characterized in closed form.
Optimal land emissions increase in land carbon stock and in land sink, while optimal
removals decrease in both. Net emissions (emissions minus removals) decrease in
the output elasticity of the ecosystem and decrease in the discount factor. In other
words, preserving the ecosystem is desireable both because of its direct value as an
input, and because of its indirect value in smoothing inter-temporal consumption.

Using data on carbon stocks from the Food and Agriculture Organization of the

3In one example, recent droughts and beetle infestation related to droughts, have resulted in
the forests of six states in the U.S., Arizona, Colorado, Montana, Nevada, Utah, and Wyoming,
becoming sources, rather than sinks, for emissions (Mooney and Murphy, |2019).



United Nations (FAO| 2019) we structurally estimate the model’s output elasticities
for 162 countries covering the time period 1990-2015. We obtain pooled estimates of
elasticities, with country-fixed dummies, for each of four clusters of countries. Each
country cluster is grouped according to the United Nations Human Development
Index (HDI). A country is categorized as either High, Medium High, Medium Low,
or Low development. Estimates are also obtained when countries are grouped by
emissions, forestry stock, geography, GDP, and OECD inclusion.

The key parameter of interest is the policy-adjusted output elasticity of land car-
bon. It quantifies the effect of a percentage increase in the country’s land carbon
stock, as measured by its CO2e content, on GDP after adjusting for optimal land
use. Since the stock affects GDP both directly as an input and indirectly via the
country’s land use policy, the policy-adjusted elasticity determines the net effects
from both anthropogenic and non-anthropogenic changes in the ecosystem.

Endogenous land policy turns out to be critical for identifying the policy-adjusted
elasticity. Country data does not distinguish exogenous land sinks from endogenous
behavior. Nor does it distinguish between emissions and removals. Without en-
dogenous policy in the model, it would be difficult to disentangle exogenous and
endogenous sources and sinks.

The estimates of policy-adjusted elasticities are positive and statistically signif-
icant over the entire sample. They are also positive and statistically significant in
the High and Medium High Development country clusters. The measured elasticity
in these clusters are positive and sizable. Applied to the U.S., for instance, the ob-
served increase in U.S. land carbon stock from 2010 to 2015 accounted for annual
GDP growth of 0.28%. In China, the figure was around 1.14%.

Estimates of the policy adjusted elasticity are not statistically significant for low
and medium low development countries although the model’s overall fit is high. In
those countries the relation between the country’s ecosystem and its GDP is more
tenuous over the time period in the data.

To assess long run effects, we calibrate the model to the elasticity and land sink
estimates and run simulations of output by country cluster from 2020 to the end
of the century. The simulations are run under alternative scenarios corresponding
to the standard four Representative Concentration Pathways (RCPs) used for the
Intergovernmental Panel on Climate Change Fifth Assessment (IPCC, [2014)). Each
RCP is based on distinct scenarios for growth in fossil fuel and energy consump-
tion, population, land emissions, mitigation investments, and climate policy (van
Vuuren et al., 2011). The RCPs are labeled according to their projected levels ra-
diative forcing achieved at the end of the century, relative to pre-industrial levels.
Low GHG concentration scenarios incorporate assumptions on improvements in mit-



igation technology and/or successful policy coordination. High GHG concentration
scenarios are based on business-as-usual assumptions.

Taking 2015 data as the initial state we incorporate model-generated land use
policies for each RCP scenario. Then using parameter estimates for production and
sequestration, we simulate dynamic paths of land stocks, land sink absorption rates,
and GDP for each HDI country cluster from 2020 to the end of the century.

The resulting forecasts show continued GDP growth for all HDI clusters until
mid-century, after which time they diverge, depending on the emissions scenario and
on the country’s level of development. In highly developed countries, GDP growth
is around 1.1% under high concentration scenarios until 2050, at which point GDP
peaks and then falls dramatically due to declines in land carbon (eco-capital) stock.
The higher the RCP, the higher/earlier the peak and the faster the decline.

The high concentration scenarios are therefore detrimental for developed coun-
tries in the second half of the century. By contrast, the low RCP scenario, which
incorporates technological improvements in mitigation and earlier peaks in fossil fuel
use, are beneficial[f| Growth in highly developed countries’” GDP in low emissions
scenarios continue after mid-century, averaging just under 1% annually to 2100.
Countries in the medium development group experience similar growth trends.

In contrast to the high development clusters, the low development clusters expe-
rience continued growth of around 2% in the high GHG concentration scenarios, and
slight declines in low ones. The trend at the end of the century suggests that growth
for the low development countries will be highest in the moderate concentration
scenarios over the very long run.

Simulations under other clustering strategies are consistent with those generated
using the Human Development Index. Overall, they indicate that the lowest emis-
sions scenarios produces higher long run GDP for the developed countries, while
moderate to high concentration scenarios produce higher long run GDP for develop-
ing countries. When aggregating across development clusters, the simulations show
global GDP by 2100 at its highest in the low to moderate concentration scenarios.
One takeaway is that in order to attain globally maximal GDP, substantial transfers
from developed to developing countries may be necessary.

We emphasize that these conclusions only concern GDP. Althor, Watson, and
Fuller| (2016) develop alternative indices relating to a country’s vulnerability to cli-
mate change. Indices of sensitivity to land use are analyzed by |Canadell et al.
(2007)); Thomson et al.| (2008)); Ito et al.| (2008); [Power| (2010); Zomer et al. (2016);
FAO (2015); Narayan et al.| (2017). The general consensus in this literature is that

4Estimates by Mohr et al.| (2015) suggest the lower scenarios to be more consistent with geological
estimates of fossil fuel availability.



low rather than high development countries are more vulnerable to climate change
and to ecological damage more generally.

Our findings are not inconsistent with these published results. We show that de-
veloping countries experience greater deterioration of land carbon under high concen-
trations scenarios even as growth in GDP continues. In other words, high concentra-
tions scenarios may make developing countries both more vulnerable and materially
better off over the next half century.

Finally, we conduct a simple counterfactual experiment by holding land sink fixed
at its average rate across the sample period. By doing so, we assess how much of the
variation in GDP in our simulations are due to the deterioration land sink absorption
rates. The results are striking. Unlike the active (inverted-U) sink model, there are
no reversals or sharp declines in the higher concentration scenarios. In the constant
sink model, high concentration scenarios display higher GDP growth than lower ones
at every point in time. Comparing the best growth scenarios for each of the two land
sink models, the simulations show that by the end of the century global output under
active sink model is less than a third of what it would be if sink absorption changes
were not a factor. Thus, long run prospects for GDP growth appear highly sensitive
to the combination of environmental and human responses to GHG concentrations.

The paper is organized as follows. Section [2| develops the model, starting with
a rudimentary model of the carbon cycle together with a dynamic model of optimal
carbon policy. This includes a description of country-specific production processes
that incorporate the carbon-based inputs described above. The structural equations
and identification strategy are described in Section [3] Section [] describes the data
and the estimation results. Section 5| describes the simulation procedure, the use
of RCP projections, and results. A summary discussion in Section [6] concludes the
paper. The Appendix at the end contains proofs, further documentation, and a full
description of the algorithms used to estimate and simulate the model.

2 A Dynamic Model of Carbon Consumption

This section presents a discrete time, infinite horizon model of carbon consumption
among n countries. Each country consumes carbon in the form of fossil fuels and
land use. Consumption interacts with natural feedback channels to determine the
evolution of the terrestrial carbon ecosystem over time.

At each decision date t = 0,1,2,..., a country faces a dynamic trade-off between
the positive effects of carbon consumption and the negative effects on its terrestrial
ecosystem from that consumption. A country chooses a dynamically optimal land



policy given this trade off and given the feedback effects from global accumulation
of GHGs in the atmosphere.

On some dimensions, the model is simpler than most TAMs. It does not con-
tain a highly detailed and disaggregated energy sector. Energy pricing and market
outcomes are exogenous. Endogenous choices are limited to land policies. These
simplifications increase the transparency of the dynamic trade offs for optimal policy
making. In particular, policy choices in the model are endogenously determined by
rational, forward looking authorities who are cognizant of the dynamic changes to
their environment. The trade offs they face are characterized by interpretable Euler
equations.

All decisions take place in a rudimentary model of the carbon cycle. The model
laid out before proceeding with the economic model.

2.1 Global Carbon Accounting

In standard methods of carbon accounting, the global stock of carbon is constant.
The carbon cycle shifts various portions of the stock to various reservoirs. This, in
turn, defines a mass balance equation at each date ¢, represented as a sum of fluxes,
i.e., net changes in the various components which cancel out in the aggregate:

0= (W™ — wi) + (W™ — W) + (W — i) + (f ™ —wf2) (1)

where w!® denotes the land carbon stock at t. It comprises the terrestrial stock of
carbon found in plants, animals, leaf litter, and organic matter in soils. The stock
wi™ is the atmospheric carbon stock at ¢, while w™®" refers carbon content in oceans.
The variable w]® is the below-ground stock of from fossil fuels All carbon stocks
are measured in a common unit [

Many of the regulating forces that determine are non-anthropogenic, includ-
ing plant photosynthesis and respiration and carbon diffusion between oceans and
atmosphere. However, these flows are also influenced by human activities.

First, the change in the fossil fuel reservoir is determined by human consumption,

wl? =Wl =/ (2)

5Due to seasonal variations or measurement error the measured carbon budget in any given
year may not be in balance (Le Quere et al.l |2018]). In a longer time scale, the total stock would
include geological carbon, that is, non-fossil fuel sources of carbon contained in the earth’s crust.
It accumulates too slowly to be relevant for the human time scale.

6Gigatonnes of CO2 equivalent (Gt CO2e). See Appendix for definitions.



where c{ °* represents global carbon emissions from fossil fuels consumption The

stock is not fully known and estimates have steadily risen since 1980 (British Petroleum,
2019). Second, the change in land biomass is determined by both exogenous and an-
thropogenic sources. Formally:

oo = = (e vl 4 s ®

The anthropogenic sources ci® and 7" constitute consumption/emissions from and

removals toward land carbon stocks at date t. Land consumption is measured by
atmospheric emissions from activities such as deforestation, agricultural harvests,
animal husbandry, and natural resource extraction. Removals (from the atmosphere)
includes reforestation, replanting, and preservation. Logically, the emissions and
removals activities must be distinguished since removals are akin to an investment in
future capacity and so it does not directly enter into current output of any country.
The difference cl@" — rla" accounts for land use change and forestry (LUCF) ]

The term sl is the global land sink representing non-anthropogenic removals
from the atmosphere. It comprises the total net carbon absorption by unmanaged
biomass due to photosynthesis and other factors. By definition it excludes LUCF.

Ito et al.| (2008)) describes land sink as a “wide range of environmental changes
which include climate change (water and temperature), disease outbreaks, added
nutrients (CO2 and nitrates), pollution damage (O3), and re-growth of vegetation
in natural (unmanaged) land that is not included under the UNFCCC reporting
guidelines for LULUCF.” The definition is broad. It accounts for most of the feed-
back effects of climate change that are not directly associated with contemporaneous
changes to the ecosystem by humans.

Both land use and fossil fuel consumption alter the mass balance equation by
altering the flows into/out of land, fossil fuel, and atmospheric stocks directly. The
land sink links atmospheric carbon to terrestrial carbon stocks via a subtle feedback
mechanism.

Recent results from [Hikosaka et al.| (2006) Raupach et al.|(2014)), Xu| (2015), and
Zheng et al.| (2018) indicate an inverted-U relationship between atmospheric carbon
stock w®™ and the land sink absorption rate, p, = sl /w!® | the land sink per unit
of land stock entering the period. The absorption rate p; can be either positive or
negative, taking values in [—1, 00). Negative values correspond to respiration and de-
composition rates that exceed in total the rate of photosynthesis. At low atmospheric
concentrations, increases in CO2e in the atmosphere increases the activation energy

lan
t

"The stock w]°® cannot be replenished on the human time scale.
8Following upgraded measurement, the United Nation’s new designation is “Land use, land use
change, and forestry” (LULUCF), though the original terminology still dominates the literature.



in plant photosynthesis. Consequently, carbon uptake (photosynthesis net of plant
respiration) rises. After some point, however, increased GHG concentrations become
toxic and higher temperatures deplete nutrient and moisture retention which fur-
ther reduces uptake. Related mechanisms are studied by Fernandez-Martinez et al.
(2017), Thomson et al. (2008), and Feng et al.| (2015). To account for these effects,
we posit

lan
5t

pr = —— = F(wi"; ) (4)
Wi

where F' is a continuous, single peaked function of w7 and 7 is a vector of param-

eters.

We will refer to F' as the sequestration function. For the simulations, we later
estimate the parameter vector 7 for a flexible functional form meeting the criteria
above. To isolate the effects on land carbon, the sequestration function (4)) is the only
feedback mechanism in the model. Other feedback effects on, say, marine ecosystems,
are not incorporated.

Combining equations , , and with the mass balance equation one
obtains a rudimentary version of the land-atmospheric carbon cycle. The channels
for this cycle are illustrated in Figure [T}

2.2  QOutput and Optimal Land Use Policies

Land emissions and removals are choices made by countries and depend on the coun-

[1¥e

try’s stock of terrestrial carbon found in biomass and soils. Adding an “7” subscript

to each of the variables, we obtain country i’s land carbon stock w!" at the end of

period ¢, its land and fossil fuel emissions c/4" and c{tos, its removals 79" and its land

sink s, These aggregate up to global stocks and flows as expected: w/@" = S~ wlen

it
fos __ fos lan __ lan lan __ lan lan __ lan
Ct (G s G =G e =i and s =) L st

The country-specific version of the land stock dynamic in Equation (3] is

W = w5 = (" = 71 4 sl (5)

Like their global counterparts, ci" incorporates activities such as harvesting, soil

lan

drainage, and deforestation within country ¢, while 7¢" includes replanting, reseed-
ing, and reforestation. The land sink s!9" of country i represents non-anthropogenic
removals from the atmosphere that feed directly to the country’s land stock.

At the country level, human activities enter into a country’s output each period.

The output y;; of country ¢ is generated by the production function

Yie = Aigi (el (whem) % () Ly (6)

8
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Figure 1: A Rudimentary Carbon Cycle (without ocean sinks).

In this expression, A; is a TFP scale parameter for country ¢ and ¢, is a log normally
distributed iid shock with mean 1. Labor L;; is directly included as a standard input.
Traditional (constructed) capital stock does not appear in @ but enters indirectly
as a service flow reflected in fossil fuel consumption cg;” that requires capital to
generate emissionsﬂ The land carbon stock w!@" enters the production technology
directly as an input and so there are tangible, contemporaneous losses when the stock
is diminished [

The coefficients «;, 5;,7;, and ¢; would generally be expected to differ across

9More precisely, if it were the case that cftos is endogenous then the absence of man-made capital
would be a serious omission since capital stock imposes structure on an agent’s choice of service flow.
However, in our partial equilibrium setup, cftos is exogenous. This means there is no constrained
decision problem for agents, and for estimation purposes variations physical capital K; are reflected
in variations in c{tos.

10Tn pure extraction models, e.g. Levhari and Mirman| (1980), (Cave| (1987), Fisher and Mirman
(1992), conservation is valued for instrumental reasons: preserving the stock allows the decision
maker to smooth consumption. The non-instrumental trade offs modeled are somewhat similar to
models of Dutta and Radner| (2004, [2006, |2009) who study dynamic strategic models of energy
usage with emissions externalities, and Harrison and Lagunoff| (2017} |2019)) who also incorporate
carbon stock as productive input.



countries. To maintain large enough sample sizes in the estimation stage, countries
with similar development and/or geographic characteristics will be assumed to have
the same elasticity profile. For estimation, various methods are used for grouping
countries according to level of development, geography, resource endowment, or trade
connections. These are described in Section [l

Combining the output equation with the law of motion for carbon stock in Equa-
tion , we obtain

o = Az () (I8 = g™ rlem 5 (L 7)

Land consumption cl¢" appears as both a direct and indirect input, the latter entering
negatively through the land stock.
A policymaker from country ¢ maximizes the discounted long run payoff

> 6" [log(yir) + 0 log(wlyy — rl™)] - (8)

t=0

Equation is a reduced form payoff defined directly over output. The first term
is i’s flow payoff from y;;. The second term is its payoff from services derived from
land stock net of efforts (removals) to expand it. This term is the payoff from
home production or, alternatively, the payoff from eco-services including tourism,
outdoor leisure, and general enjoyment of green space. Home production is relevant
in developing countries where the land ecosystem is a non-monetized input that
maintains soil stability, water filtration, and so on. The practical effect of this term
is that is creates a trade off in the choice of 7"

At each date, a country chooses land activities c;y" and r
given fossil fuel consumption clt °* land sink s;;, and labor th

A land carbon policy for country i is a pair of contingent maps c® and r#® from
the initial stock wl‘m , and land sink s!9" to land emissions and removals, respectively.

Given its chosen land policy, the country’s Bellman equation is

lan lan

optimally, taking as

lan _lan. lan lany\ __ lan
Vi(e®™, 1 yWit—15 Sit )= max {az log (™)
fom g

5 log (sl + iy + sl — i)+ 6y log (i, — i)
e oB(e) o) 8 E [Vl o ) L o)

Equation (9) omits constant term log(A;) and current log productivity shock log(e;).
While we attribute a structural interpretation for the shock, under the log normal

10



assumption the expected future stream of payoffs over the shocks is zero and so it
will not figure in the policymaker’s decision problem.
An optimal land policy is a land policy that maximizes the representative citizen’s

lan

long run payoff at each ¢ for every stock w!%™ ; and sink si¢", given the law of motion

in ([5)) for land carbon. The optimization problem @D relies on a few key assumptions:

e The policymaker maximizes output rather than consumption or some broader
measurement of welfare. The simplifying assumption allows one to compare
GDP across countries and across time under GDP-maximizing land use deci-
sions. To make the model tractable, other measures of socio-economic costs are
omitted. Consequently, the estimates reported here can be viewed as a lower
bound on the true damages from degraded land stocks.

e Land use is determined by a policymaker. This is essential to the identification
strategy. By assuming that government can optimally respond to changes in the
terrestrial ecosystem, we analyze a “best-case” mitigation policy. To the extent
that actual land use is not optimal, the estimates can be viewed as a lower
bound on true damages. The assumption is also a reasonable approximation
of the power of national governments in determining land use. The bulk of
carbon biomass is on nationally owned land. In China, for instance, more than
half of its territory and nearly all its forest land is publicly owned by the state.
In the U.S. 28% of its territory and most of its forested areas are nationally
held, and this excludes property held by various state governments (Rights and
Resources Initiative, [2015; |Vincent, Hanson, and Arguetal, [2017). Even when
property is privately held, federal laws governing pollutants, forestry, water
and waste management, eminent domain, zoning restrictions, safety, building
codes, and an array of subsidies and taxes implicate government in virtually
all forms of land use.

e Global atmospheric COZ2e concentrations are exogenous to each country’s op-
timization problem. This is partly for tractability. Globally, LUCF is a small
fraction of total emissions and a tiny fraction of the total atmospheric GHGs.
The effects of any particular country’s land policy at a point in time is even
smaller. Consequently, the optimization problem excludes the effects of its

choice of cl¢" on future atmospheric concentrations.

" The assumption does not imply that a country regards its own land sink as exogenous. By
Equation , land sinks are proportional to carbon stock, and the effects of an incremental change
in its own carbon stock are fully internalized by the country.

11



e In this partial equilibrium framework, fossil fuel use and labor are exogenous to
a country’s land carbon policy. Fossil fuel use and labor are then determined
in the global market rather than the result of a country’s decision problem.
One could point to general carbon tax policies that simultaneously affect both
fossil fuel and land use emissions. Carbon taxes, however, are difficult to
apply to land uses at the source. Unlike fossil fuel emissions, measurements
of land carbon emissions typically do not or cannot disentangle endogenous
from exogenous factors.E Moreover, targeted land use policies (e.g., licensing,
zoning, leasing fees) are often available. Consequently, model treats fossil fuel
policies as a separate policy problem outside the scope of the model.

The following proposition establishes that the country’s optimization problem
admits a simple closed form solution:

Proposition 1 An optimal land carbon policy for country i is given by

ai(1 = 6)(2wii, + ")
a; + Bi + 0;

lan(, Jlan lan
Cit (Wi,t—lv sit")

(10)

7

0;(1 — (5)(2wl-fﬁl + slan)
a; + Bi + 0; '

lan (, \lan lan _ lan
Ty (%,tq:sit ) Wit—1

The optimal land policy exists whenever o; > 0 and o; + 5; +6; > 0. If B; > 0 then

The derivation of is in Appendix . A country’s optimal land emissions
and removals are multilinear functions of lagged land stock w!4"; and current land
sink s;;. Emissions (removals) are decreasing (increasing) in the discount factor since
the upside to removals comes in the future.

Recall that «;, the production coefficient on land emissions, represents that out-
put responsiveness to increases in land emissions. In fact, both emissions and re-
movals are increasing in «;, The increase in removals owes to the fact that removals
represent a re-investment in land carbon that enables increased land consumption in
the future.

Parameter (3;, the coefficient on land stock, represents output responsiveness to

the ecosystem. An increase in f3; decreases emissions but increases removals.

12Non-carbon GHG'’s such as nitrous oxide, an important source of land emissions, is typically
excluded from carbon tax policies.
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Existence of equilibrium requires some parametric restrictions. If ; < 0 then
the country should generate no land use emissions. If 5; > 0 and 6; < 0 then the
country should accumulate an unbounded volume of biomass. If o; + 5; + 6; < 0,
then the country should immediate deplete its land stock. Payoffs are ill-defined in
these cases.

Note that the cases 8; < 0, and even «; 4+ [3; < 0 are consistent with existence
of an optimal land policy. Changes in land stock can be negatively related to mea-
sured GDP growth due the presence of home/non-monetized production. With home
production, a reduction in land biomass can lead to greater substitution toward mon-
etized output and away from home production. This “substitution effect” is likely
more prevalent in developing countries and could produce a sum «; + [3; that’s neg-
ative. In that case, #; must be large relative to |5;| so that the sum «a; + 5; + 6;
remains positive.

Later on, the model is specialized to the case where land sink absorption rates
slan /ylan are identical across countries. In that case optimal land policies in can
be alternatively expressed simply as

0u(1 = 8)le, 2+ )
o + B +0;

cii" (Wify, o) =

(11)
,(1— S)lan (24 pr)

lan(, \lan ) _ lan it—1

(W p it —
t t—10 Mt =1
T ‘ o; + Bi + 0;

Equation displays the sensitivity of land use policies to changes in the land sink
absorption rates.

3 Structure and Identification

The structural parameters in the production model are «;, 5;,V;, ¢;, 0;, and the scale
parameter, A;. Ideally, these parameters could be estimated directly for each country.
However, direct estimation of certain of the parameters is infeasible since existing
carbon accounting methods do not distinguish between land consumption /2", land
removals ri" and land sink s;;. All three are combined in measurements of net emis-
sions from land after accounting for removals and sinks. However, only consumption
(as measured by emissions) generates current production.

To get around these limitations, optimal land use policies in are incorporated
directly into the output equation to produce a tractable “reduced form” equa-

tion in variables for which there is data. This yields the following equation system
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expressed in natural logs:

Yit = Bio + Bin X1t + BioXoi + Bis Xsit + €3

where

and

Y = log(yit)

X = log (2‘4%1 + Sé?n)

lan lan

Sit = Wit_1Pt
. fos
Xoit = IOg(Cz‘t )

X3it = log (Lit>

(1 —
Bio = log(A;) + a;log (M) + i log (1 —

a; + B +0;

B =a; + 6
Bis =i
Biz = ¢;

€t = 10g(5¢,t)
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a; + B +0;

(12)

(13)

(15)

(16)

(17)



In the equation system (|12} . . the explanatory variable X;;; is a log composite
of the country’s one-period lagged carbon stock w!4", and its land sink s!9". In turn,

the country’s land sink s!9" is a product of its lagged stock wf‘@"l, and absorption

rate p;. The variables Xy;; and Xj;; are logs of L;; and cit , respectively.

Equation follows from a simplifying assumption that the sequestration func-
tion F' in Eq. is the same for all countries. The country absorption rates can
then computed from global absorption rates according to sl /wl4™, = p; for each
country . Since p; is observed directly, the functional form of F' and the parameter
vector 7 is not needed for the output estimation. These will be needed later on for
the simulation exercise.

The “reduced form” parameters B;y, Bj1, Bi2 and B;3 are generated from struc-
tural parameters. Neither A; nor 6; are identified. These are largely nuisance parame-
ters, however, as their role in the relationship between green house gas concentrations
and GDP is fully summarized by the composite parameter Byy. (Parameter 6; is par-
tially identified by the requirement that a; + ; + 6; > 0.) More importantly, the
production parameters «; and 3; are only partially identified. Specifically, the sum
B;1 = «a; + (;, but not the individual values of a; and f;, are identified. This follows
from the fact that optimal policy responses cl¢" and r!" are collinear in the lagged
stock wf%” ;- The other elasticities v; and ¢; are 1nd1v1dually identified as B;s and
B;3, resp.

The coefficient of interest is B;; = «; + ;. It approximates what we’ll call
the policy-adjusted output elasticity under optimal land use. The policy-adjusted
elasticity is derived from the following terms. Let y:‘(wf%” 1, skam) denote the optimized
output when optimal land use policies clf™(w!y",, s%") and rig™(w!4™,, si™) are in
place. Carbon stock enters both as a direct input and as an indirect input via the
optimal land use. The combination of the two in the log output equation yields

lan

ln (wle )

a; log(cyy
+ Bilog (wiy"y — et (Wi, siy™) + g™ (Wi, si™) + sig")

= (i + B;) log (2w + si4™) = (o + B) log(wi%™ (2 + pr)) = BaXae (23)

The last line in follows from Equations and . In this expression, the
composition of shares in y; into ecosystem and land consumption are described by
the combined term B;; X;1;. From the term B;; X;1;, one derives the policy-adjusted
(output) elasticity of the y! with respect to lagged carbon stock w!®?. The policy-
adjusted elasticity, comprising a combination of direct and indirect changes in carbon
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stock, is approximated by B;;. Specifically,

y; Wity
Z 7 an ~ Bn=a;+ 5 (24)
(8w§?fil) (yl- (e, sl

Overall, land stocks are altered by carbon sink absorption and absorption rates
are, in turn, altered due to GHG concentrations. B;; then approximates the response
in current output to increased GHGs.

4 Estimation

4.1 Overview

This section describes the data and estimation of the system —. Subsection
describes the data. A complete description of the data sources and constructions
are in Appendix. Subection contains estimates for “reduced form” parameters
corresponding to By, B;1, Bz and Bz in Equation ((12)).

To obtain a reasonable sample sizes, cross equation restrictions are imposed for
countries with similar levels of development. Countries are clustered according to the
U.N.’s Human Development Index (HDI) described below. As a robustness check,
estimates are obtained for other clustering strategies.

In Section [f] these production estimates are combined with estimates of a land
sink sequestration function that parsimoniously fits the data. The combination gen-
erates simulated time paths of land stocks and GDP over all clusters in the HDI.

4.2 The Data

The relevant times series are the country and global land stocks, {w!®"} and {w!"},
resp., the country and global land sinks {sl¢"} and {s!*"}, resp., the global GHG
atmospheric stock {w®™}, and the country-specific output, fossil fuel consumption,
and labor force: {yi}, {c/”*} and {L;}, respectively. Data for these time series spans
162 countries covering the time period 1990-2015.

Except for labor and GDP, units are measured in gigatonnes (Gt) of carbon
dioxide equivalent (C02¢) units. Units of C02e convert all green house gases into
CO2 by measuring Global Warming Potential, a relative measure of how much heat

a greenhouse gas traps in the atmosphere.E Labor is measured in size of workforce

BDefinitions and all conversion factors are provided in the Appendix.
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using standard definitions from the World Bank. GDP is measured in 2011 constant
dollars.

The country land carbon stock series, {w!"}, comes from FAOSTAT, the U.N.
Food and Agricultural Organization’s database which publishes updates of country
data every five years based on U.N. reporting requirements that country data be
reported at decadal and mid-decadal dates. From here on the dates ¢t will range over
the 5 year increments. i.e, t = 1990, 1995, 2000, 2005, 2010, 2015. This presents no
problem for the theory since the model is agnostic about the length of a decision
period. The notation “7” will be used to represent annual time periods.

With this notation, the stock and flow data are as follows. Data on stocks
{wy, wlm wam L.} are reported at quinquennial dates t. The data on flows are also
reported at quinquennial dates ¢ but represent aggregates over the past five years,
up to and including the quinquennial date. Consequently, the flow data represented

by a “tilde” on the variables are defined as

4 4 4
s =D Elr =Yl =Y e (25)
7=0 7=0 7=0
for t = 1990, 1995, 2000, . ..,2015. In addition,
o <l I ~
pr =~ and S" = w5, pr (26)
Wi—5

are the quinquennial analogues of the earlier specification.

A quick summary of the variables, measurement units, and sources are listed in
Table 1. These variables will those used to estimate the equation system —.
Details on units and sources are in Appendix [7.3]

Table 1: Summary of Data Variables.

Symbol  Units Description Source
wler Gt CO2e Global carbon stock Global Carbon Project
wf?” Gt CO2e Country ¢ carbon stock FAOSTAT
wm Gt CO2e Global GHG atmospheric stock NOAA
L population Country ¢ labor force World Bank
glan Gt CO2e Global land sink over last 5 yrs Global Carbon Project
55?” Gt CO2e Country ¢ land sink over last 5 yrs calculated in Eq.
5{;03 Gt CO2e Country 4 fos. fuel emit. over last 5 yrs World Resources Inst.
Jit 10'2 2011 dollars  Country i GDP over last 5 yrs World Bank

All stocks are end-of-quinquennial time period. Variables with “tildes” are aggregates of annual flows over the five year year
period up to and including the quinquennial year.
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4.3 Production Parameter Estimates

We group countries using a standard measure, the United Nation’s Human Devel-
opment Index (HDI). The HDI formulates criteria for four distinct country groups:
High Development, Medium High Development, Medium Low Development, or Low
Development (United Nations Development Programme, 2019) The HDI partition
to cluster countries allows for heterogeneous production according to different levels
of development while also preserving reasonable sample sizes within each cluster.

The reduced form parameters B;;, B and B;3 are assumed identical across all
countries within each development group. Under this cross-equation restriction, the
estimating equation (27)) reduces to

Yie = Bio + Bri Xt + BraXoir + BisXsi + €t (27)

for country ¢ in HDI cluster k. Country-specific heterogeneity of the constant term
B is maintained using fixed effect dummies (via the scale term A;).

Results are in Table . The main focus is on B; which, from Equation ,
is the policy-adjusted output elasticity of land stock. Strikingly, estimates for By
are statistically significant, as are all the coefficients, in the global cluster where all
countries are included in the sample[]

The disaggregated estimates from the HDI partition indicate that the more pre-
cise estimates of By come from the developed countries. Estimated By is larger and
statistically significant for countries classified as High or Medium High development.
It is not significant for the Medium Low or Low clusters. Significantly, the pattern is
reversed for Bg, the estimated value of the elasticity with respect to fossil fuels. B,
is not statistically significant for High development cluster but is for the others. Ap-
parently, eco-capital rather than fossil fuels are associated with higher GDP growth
for developed countries. Whereas, fossil fuels remain critical for less developed coun-
tries. The contrast between development groups plays a decisive role in the later
simulations.

The policy adjusted elasticity definition in is a useful guide for interpreting
the estimates. The point estimates in Table [2| roughly approximate the incremental
value of land carbon stock. Using the global cluster, a 1% increase (decrease) in
global land carbon is associated with a roughly 0.36% increase (decrease) in annual
GDP over the five year period following the change in carbon stock. The change in
GDP includes the effects of both the increased (decreased) land consumption and
the altered ecosystem.

14Unless otherwise stated, the references to statistically significance in the text refer to 1% levels.
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Table 2: Estimated Policy-Adjusted Production Coefficients by Human Develop-
ment Index Country Cluster.

Dependent Variable - Log GDP
Medium Medium

Coefficients High High Low Low All

Bj Carbon Stock 0.759*** 0.845*** 0.004 0.057 0.385***
(0.120) (0.158) (0.161) (0.148) (0.074)

Bs Fossil Fuel 0.098 1.133*** 1.045%** 1.0117%** 0.963***
(0.136) (0.116) (0.108) (0.142) (0.065)

Bs Labor Force 0.561*** 0.383*** 0.713*** 0.694*** 0.631***
(0.119) (0.145) (0.140) (0.156) (0.071)

Observations 230 225 180 175 810

R? 0.995 0.995 0.996 0.994 0.995

F' Statistic 562.4 578.9 658.7 423.8 626.6

OLS with Country-Fixed Effects. Standard errors in parentheses. Symbols *, ** and ** indicate statistically

significant at the 10%, 5%, and 1% levels, respectively. Based on Human Development Index (HDI), U.N.
Development Programme. #Observations = # countries in cluster X 5 quinquennial time periods, 1995-2015.

At a more disaggregated level, consider a country in the High development cluster.
A 1% increase in its land carbon is associated with a 0.76% increase in its annual
GDP, again over the next five year period. For the U.S. a conservative estimate for its
five year GDP in the quinquennial period 2015-2020 is 93.36 trillion (2017 constant
dollars). A 1% increase 2020 in carbon stock would result in an additional 623 billion
USD over the 2020-25 periodE The observed increase in U.S. land carbon stocks
from 2010 to 2015 was, in fact, around 1.5%. If this were to be replicated in the
2015-2020 period, then the increment to GDP would be about 1.3 trillion USD, or
about 1.4% of GDP (averaging 0.28% increase in annual GDP) over the 2020-2025
period.

Of the increase in U.S. land carbon stock, almost a third of that was due to its
land sink under the present methodology for calculating country sinks. Two thirds
were due to reductions in land emissions and /or increases in removals. Consequently,
any large reductions in land sink absorption rates over the next few decades could
have substantial effects on growth rates, particularly for High and Medium High
countries.

Applying the same logic for China, the observed increase in Chinese land carbon

5This is a rough estimate both because of B; approximates the actual elasticity in Eq. and
because it is an instantaneous rather than an interval elasticity).
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from 2010-2015 was 6.7%. Applied to an estimated five year GDP of 61.2 trillion
from 2015-2020, a 6.7% increase in land carbon stock from 2015-2020 produces an
additional 3.46 trillion or 5.66% increase in GDP (using estimate from the Medium
development cluster) over the 2020-2025 period.

As robustness check, several other partitions or clustering strategies are also con-
sidered. All told, we estimate the policy-adjusted output equation for 8 cluster-
ing strategies: (i) the Global cluster (all 162 countries), (ii). the HDI clusters, (iii)
binary HDI which groups High and Medium High together and Low and Medium to-
gether, (iv) binary inclusion/exclusion in the OECD, (v) binary inclusion/exclusion
in top 30 GDP countries, (vi) binary inclusion/exclusion in top 30 GHG emitting
countries, (vii) binary Inclusion/exclusion in the 35 most heavily forested countries
as measured by carbon biomass, and finally (viii) regional partition into six clusters:
North America, South and Central America (including Caribbean countries), Africa,
Europe, Asia, and Oceanall|

The finer partitions allow for more cross-cluster heterogeneity; coarser partitions
increase sample size within each cluster. The results for global and HDI clustering
strategies (strategies (i) and (ii)) are in Table[2] The results for the other strategies
are in the Appendix (Tables . In all the clustering strategies the estimates of B
are statistically significant for groupings that includes mostly developed countries —
OECD membership, top GDP, top carbon emitters, etc. Cross-referencing the esti-
mates in Table [2| with those from other Tables in the Appendix, the instances where
estimated B; values are indistinguishable from zero tend to come from clusters con-
sisting of highly forested countries in subsaharan Africa and Asia. The higher initial
resource stock and lower level of development may have rendered these country’s
outputs less responsive to changes in the ecosystem thus far.[i]

5 Simulated Time Paths for 2020-2100

Estimates from the previous section are used here to simulate the model time paths
for land carbon stocks and GDP over all country clusters. To run the simulations, we
incorporate estimates from an parametric sequestration function in the next subsec-
tion. The simulations are then carried out under alternative concentration scenarios,
each corresponding to one of the four standard Representative Concentration Path-
ways (RCPs) developed four research teams in the Global Carbon Project for IPCC’s

16 All data including membership lists for each clustering strategy are available upon request.
"The model does not address other ways in which developing countries may be vulnerable to
climate change. See |Althor, Watson, and Fuller| (2016]) and other references in the Introduction.
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5.1 Sequestration Parameter Estimates

In order to simulate the time paths, models first requires an explicit, parametric form
for the land sink sequestration function. The functional form should satisfy boundary
conditions and the non-monotonicity posited earlier. The criteria are satisfied by a
Gaussian land sink sequestration function expressed as

log(py + 1) = mo + mwt + mo(wi)? + ny (28)

Recall that p; is the quinquennial sum of annual carbon land sink absorption rate
defined in . If w9 < 0 then the crucial property that sink absorption is an inverted-
U function of concentrations is satisfied. In addition the unit adjustment to p; in
the log term ensures that the lower bound condition, p; > —1 is satisfied. Unlike a
quadratic which falls rapidly after reaching a peak, the value of p, in (28| gradually
declines and converges slowly to its lower bound. A mean zero random disturbance
n; reflects measurement error.

The estimated values 7, 71, Ty reported in Table [3| are consistent with the model.
Figure [2| plots the land sink data against the fitted sequestration function.

Table 3: Estimated Coefficients of Land Sink Sequestra-
tion Equation (28).

o m 9 R?  F-stat

0.500*  3.02E-4**  -4.19E-8*  0.485 12.7
(0.277)  (1.65E-4)  (2.44E-8)

k) kk
)

Standard errors in parentheses. Symbols , and *** indicate statistically
significant at the 10%, 5%, and 1% levels, respectivel

The negative coefficient m, provides support for inverted-U sequestration. It
indicates that the global absorption rate reaches a maximum at atmospheric stock
around w™ = 3650 Gt CO2e (467.35 ppm CO2¢) and declines thereafter. This
is lower than peak CO2 absorption at constant temperatures, e.g. Xu/ (2015) and
Thomson et al.| (2008), suggesting that a warming climate plays a role.

The data suggests that climate change, apart from pure toxicity /nutrient effects
from increased GHGs, contributes to reduced sink capacity.

The fitted global land carbon sequestration equation is displayed against sink
rate data in Figure 2]
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Figure 2: Fitted Sequestration Function Against Land-Sink Absorption Rate.

5.2 RCPs and Simulated Land Sink

A Representative Concentration Pathway (RCP) consists of various projected time
paths for GHG emissions and concentrations. Each RCP corrresponds to a specific
increase, either +2.6,4+4.5,+6.0 or +8.5, in radiative forcing W/m? at the end of
the 21st century relative to pre-industrial levels. Aggregating by region and sector,
an RCP is based on a projected path of carbon factors (carbon per energy unit, kg
C/GJ) and energy intensities (energy use per dollar income, GJ/$) from the present
to the end of the century. These projections are in turn generated by distinct inte-
grated assessment models of energy use, fossil fuel emissions, mitigation investments,
technological innovations. Lower carbon factor results from input substitution from
high carbon emitting sources to lower ones. Lower energy intensity results from
combination of technological innovation and conservation efforts.

A good overview is found jvan Vuuren et al.|(2011)). The Appendix of our paper
describes modeling assumptions and sources for each of the RCPs in more detail.
Table [4| provides a rough summary@

18See also van Vuuren et al,| (2011), Fig 4).
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Table 4: Summary of RCP Scenarios.

Scenario Carbon Factor Energy Intensity
RCP 2.6 Steepest decline Steepest decline

reaches lowest steady state reaches lowest steady state
RCP 4.5 Moderate decline Moderate decline

reaches intermediate steady state reaches intermediate steady state
RCP 6.0 Increase, peak, decline Moderate decline

reaches high steady state reaches intermediate steady state
RCP 8.5 Constant Slow decline

remains at highest steady state reaches highest steady state

The RCP 2.6 achieves the lowest concentrations scenario by 2100. It incorporates
a carbon-limiting climate policy and higher rates rates of technological adoption.
RCP 8.5 is the highest based on a business-as-usual setting.

Using RCP projections, we construct series on atmospheric stocks {wf%tp} and

fossil fuel emissions {Eg;?;cp} as t ranges over quinquennial dates from 2020-2100.
The atmospheric series {w{5¢:p} are then fed into the estimated sequestration equa-
tion to produce land sink absorption rates which, in turn, are fed into the equilibrium
law of motion to produce carbon stocks for 2020-2100. Finally, all the carbon stocks
and flows are combined with a labor force forecast and fed into the estimated GDP
equations to produce four GDP time paths for each country from 2020 to 2100.

The land sink absorption projections are displayed at the global level in Figure
. It displays the calculation global sink absorption rate 51" /w!®® under each of four
RCPs from 2020 onward. In three of the four scenarios, absorption ceases and turns
negative by the end of the century. In these scenarios, CO2e atmospheric concen-
trations increase to the end of the century, albeit at decreasing rate for RCP 4.5.
Negative values indicate a net outflow from land atmospheric carbon. The outflow
can occur for a variety of reasons, including stresses from increasing or increas-
ingly volatile temperature, destruction from severe weather events, and impediments
to nutrient absorption for high enough CO2 concentrations (Hikosaka et al. |2006;
Fernandez-Martinez et al., [2017; Raupach et al., 2014; [Feng et al., 2015; Xu, 2015;
Zheng et al.| 2018)). Only in the lowest emissions scenario RCP 2.6 does land sink
increase. In this scenario, CO2e concentrations peak early and decline thereafter
as strong carbon policies and mitigation technologies take effect. Significantly, the
data on growth in GHG concentrations from to 2016 has outpaced the most severe
scenarios posited in RCP 8.5.

The paths displayed are roughly consistent in shape though not in levels to fore-
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casts of Thomson et al. (2008) who use the same RCP scenarios. The difference in
levels is likely due to the fact that they measure both non-anthropogenic and anthro-
pogenic (e.g., reforestation efforts) contributions to the land sinks. The latter utilizes
forecasts of carbon pricing scenarios. Here we look at only non-anthropogenic sink
capacity.
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Figure 3: Projected Global Land Sink Absorption Rates, 2020-2100.

5.3 Simulations of Land Stocks and GDP

Using the estimates as calibrated parameters, we simulate the model for each of the
four RCPs. Specifically, we simulate the dynamic paths of {gi rcp} , {wfg’}%cp},
and {8l{"hop} t = 2020,2025,2030, ..., 2100 given the projected emissions {wi'5ep},
country hydrocarbon emissions {55?18%0 p} and labor force {L;}.

The simulation fixes a given RCP forecast {w{h-p} for atmospheric stocks. It
then produces model generated series for land stocks and GDP as follows: Step (i):

lan
t—1,RCP

construct the predicted global land sink absorption series {ws?’lgc” from the land
sink estimation given parameter estimates 7, 71, and 7o; Step (ii): recursively gen-
erate the series for land stocks {w!?"} from the model law of motion under estimated
parameters in optimal land policy; Step (iii): generate GDP from the predicted value
of given Eio, Bil, Eig and BB and given exogenously constructed series for labor {L;; }
and fossil fuel emissions {/**}. The complete algorithm is detailed in the Appendix.

Since the optimal land use parameters in the estimation stage are not fully iden-

tified, the algorithm does not generate direct projections on future land use. Conse-
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quently, the consistency of the model with land use scenarios in the RCPs themselves
cannot be verified []

The results of Step (ii), the simulation of land carbon stocks for each cluster and
each RCP, are displayed in Figure 4l The graphs in the Figure display the four RCP
time paths together in each of the four HDI clusters. An alternative display of graphs
organized by RCP scenarios is in Figure [I1]in the Appendix.

Not surprisingly, low concentration scenarios RCP 2.6 and 4.5 display higher
stocks through time than the higher concentration scenarios 6.0 an 8.5. RCP 2.6,
which corresponding to the lowest emissions and most aggressive mitigation poli-
cies, displays the most growth in land carbon stocks regardless of the particular
development cluster.

After mid-century, the differences between the lower and higher emissions scenar-
ios display starkly different environmental outcomes particularly in High and Medium
High clusters. Moreover, in the High and Medium High clusters, the stocks increase
in low concentration scenarios while in Medium Low and Low countries, the stocks
decline in every scenario. This may be because mitigation technologies and more
sustainable land policies are already in use in the more highly developed countries.

9In principle, the global balance equation could be used to to generate CO2e emissions from
optimal land use in the model. To proceed, one would need to include a full model of ocean sinks,
well beyond the scope of the exercise.
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Figure 4: Land Carbon Stocks by HDI Cluster.

The growth paths shown Figure[d are comparable to net land emissions in
son et al| (2008). They use an IAM framework similar to the one use in RCP 4.5
in order to estimate total yearly anthropogenic sequestration. Their paths resemble
ours for High Development countries under the intermediate scenario RCP 6.0.

The final step in the exercise simulates GDP to the end of the century in each
RCP scenario, for each country, and for each cluster. The results are displayed in
Figure [5, again displaying the four RCP time paths in each of the four HDI clusters
(as with Figure {4). An alternative display by RCP scenarios is in Figure |12 in the
Appendix.

Three of the four clusters display a natural ordering of the scenarios by the end
of the century. For the High development cluster, GDP growth is higher the lower
the concentrations/emissions scenario. For the Low and Medium Low clusters, the
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pattern is reversed: GDP growth is higher the higher the concentration scenario. For
the Medium High development cluster, the intermediate scenarios are most growth
enhancing.

Significantly, both High and Medium High development clusters show a display
a “peak and decline” pattern in GDP for the two highest concentration scenarios 8.5
and 6.0. Under RCP 8.5, GDP in the High development cluster grows at an annual
rate of 1% until mid-century, after which time it falls at a dramatic 10% per annum.

In other words, high emissions scenarios appear catastrophic for highly developed
countries. This may seem unlikely. The decline is largely driven by two factors: the
collapse in land carbon stock due to dramatic declines in sink absorption rates, and
the lack of innovation in mitigation technology - a built in feature of the 8.5 RCP
scenario.

RCPs 4.5 and 2.6, by contrast, assume mitigation improvements and earlier peaks
in fossil fuel use. These scenarios are supported by Mohr et al. (2015) who provide
estimates of fossil fuel extraction costs that suggest the lower scenarios may more
likely. In our simulations, growth in highly developed countries’ GDP in low concen-
tration scenarios continues after mid-century. Under scenario RCP 2.6, growth in
the High Development cluster averages 0.8% per year. This is somewhat lower than
the recent trend but not out of line with forecasts of declining population growth
highly developed countries. Countries with higher projected population growths are
likely to experience higher growth than 0.8% average for this cluster.

The simulations suggest then that the low concentration scenario displays the
best prospects for long run GDP growth among the developed nations. For these
countries, the declining influence of fossil fuels together with the large influence of
eco-capital (as shown in table [2) makes the low emission scenario most attractive
among the four.

By contrast, GDP growth declines or is flat under RCP 2.6 in all other clusters.
The Low development cluster, in particular performs well under RCP 8.5 averaging
around 2.5% annual growth. For countries in this cluster, land carbon matters less
than fossil fuel-driven growth.
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Figure 5: Quinquennially Aggregated GDP by HDI Cluster.

The global picture is summarized in Figure [(] The Figure displays the aggre-
gation of GDP across all four HDI clustered groups. Figure [6] shows that by the
end of the century the moderate-to-high scenario 6.0 produces the most growth. By
appearances, however, the path trend is decreasing for 6.0 and increasing for 4.5 and
2.6. Hence, if the paths continued into the 22nd century according to trend then
GDP under RCP 6.0 would probably be overtaken by the low-intermediate scenario

RCP 4.5, and possibly even the lowest scenario RCP 2.6.
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Figure 6: Global GDP, Aggregated Quinquennially and Across HDI Clusters.

If the trend in Figure[6 holds up, it suggests again that the best-case prospect for
growth requires some form of transfer from the highly developed countries to lower
developed ones. This would be necessary even if the high-intermediate scenario 6.0
remains the best-case. Current emissions trajectories are exceeding even the original
RCP 8.5 scenario.

The results also point to the drawbacks of seemingly straightforward solutions
such as technological transfers. Such transfers are intended to place production tech-
nologies of developed nations into the hands of developing ones. In fact, this would
produce lower growth for these countries than under their current technologies, as-
suming optimal land use adjustments by these countries. In other words, technology
transfer may be a poor substitute for direct aid.

Finally, we note that the path contours in Figure [6] are not specific to the HDI
cluster strategy. The simulations were run under all eight cluster strategies. A side-
side comparison of all eight is displayed in Figure [13]in the Appendix and reveals
only minor differences.

5.4 Isolating the Effects of the Land Sink Mechanism

The land sink mechanism, whereby increased GHG concentrations eventually dete-
riorate sink absorption, plays a role in the simulation results. How big a role does it
play?

To address the question, we perform a simple counterfactual experiment. We
simulate a version of the model in which the land sink absorption rate is held fixed
at its empirical average value p = .043 Gt CO2e over the sample period (Figure .
Everything else is the same as before. We refer to this as the “constant sink model”
and compare it with the “active sink (inverted U) model”.
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Figure 7: Counterfactual Constant Sequestration.

The resulting time paths are displayed in Figures Figure [§ displays RCP
paths of carbon land stocks in each cluster in the constant sink model. By keeping
land sink absorption constant, the paths are entirely driven by simulated forecasts
of land use practices. Carbon stocks therefore do not vary over RCP scenarios. The
Figure shows that intensive deforestation in the low development countries leads to
declines in land stocks. Increased reforestation in high development countries leads
to increases in stocks.
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Figure 8: Land Carbon Stocks by HDI Cluster in Constant Sink Model.

Yet, in stark contrast with the active land sink model, the highest emissions/concentrations
scenarios are most conducive to GDP growth in all four clusters. This is displayed
in Figure [9] Growth rates range from 1% in the High development cluster to 2.4%
in the Low development cluster.
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Figure 9: Quinquennially Aggregated GDP by HDI Cluster in Constant Sink Model.

In all cases, the best-case scenario in the constant sink model produces higher
growth rates than the best-case scenario in the active sink model. This fact is not
surprising since the active sink model shows declines in the absorption rate by 2020
in high concentrations scenarios but not low ones. What is striking is how large the
differences between the two models are. These differences are displayed in Figure
Figure [10] displays side-by-side the simulated global GDPs in both the active and
constant sink models. In the constant sink model, the ordering of the scenarios from
high to low concentrations is maintained throughout. Unlike the active sink model,
there are no reversals or sharp declines.

In a comparison of best-case scenarios, annual GDP growth in both models are
comparable (under RCP 8.5) until mid-century at which point they diverge sharply.
Annual global GDP growth in the active sink model in the best-case is 0.28% by
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2100. Increases up to 2060 are largely offset by decreases thereafter. Whereas, an-
nual GDP growth to 2100 in the constant model in the best-case is 1.5% annually
under the constant sink model. Initially large increases taper off later in the century.
This is roughly in line with long run projections by the Organisation for Economic
Co-operation and Development (Organisation for Economic Co-operation and Devel-
opment, 2019)), none of which incorporate active land sinks. To put the sink model
comparison in perspective, by the end of the century global output under active sink
rate is less than a third of what it would be in the absence of a decreasing sink.
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Figure 10: Active vs Constant Sink Comparison: Global GDP, Aggregated Quin-
quennially and Across HDI Clusters.

6 Concluding Remarks

All TAMs trade-off richness with tractability. The present paper leans toward the
latter, omitting details on the energy sectors. This allows us to isolate effects of
one causal mechanism: land sink sequestration. It is one among many mechanisms
that determine damage from climate change. Even so, the mechanism is subtle.
The effects of GHG concentrations on output work both directly and indirectly via
endogenous land use.

Estimated coefficients show that terrestrial carbon stocks, adjusted for optimal
land use, have potentially large effects on GDP growth, particularly in more highly
developed countries. It is unclear why the GDPs of developed countries, more so
than others, would be more responsive to land stock changes. One possibility is that
interdependencies in more advanced technologies, e.g., computerization of wastewater
management systems, are increasingly sensitive to small changes in the ecosystem.
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The simulation make use of the estimated sequestration function. In physiological
terms, sink rates are already shown to be sensitive to CO2 concentrations. High
concentrations of GHGs are shown to diminish sinks. Fitting the land sink to a
Gaussian sequestration function, we apply the model and production estimates to
the standard RCP scenarios.

The simulation results display widely divergent trajectories between developing
and developed countries. Developed countries do well under low concentration sce-
narios. This may be because mitigation and conservation techniques that lower
production shares in fossil fuels have already been widely adopted. Less developed
countries, by contrast, do badly in low emissions scenarios and better in high emis-
sions scenarios (at least until 2100). A larger production share in those countries
comes from fossil fuels.

Finally, the counterfactual simulations under constant land sink suggest then
that long run prospects for GDP growth appear highly sensitive to environmental
responses to GHG concentrations.

A few caveats are necessary. First, the simulations are based on a fitted seques-
tration function. External validation exists for some, but not all, of its attributes. A
different approach is taken by Lubowski, Plantinga, and Stavins| (2005) who study an-
thropogenic removals in an econometric model of land use and sinks. Their approach
rules out non-monotone sequestration since sinks are calculated from removals using
standard conversion tables (Birdsey|, [1992)). Their approach is closer to the constant
sink model we analyze earlier. The studies that validate the active land sink model
are typically localized or take place in controlled environments. Less is known about
the back end of this relationship if or when CO2 concentrations reach unprecedented
levels. This is most relevant for RCP 8.5 scenario in which concentration levels
almost triple by 2100.

Second, the simulation model is calibrated to the elasticity estimates over the
1990-2015 period. Hence, we only project out from current technological trends. The
simulation nevertheless establishes an important baseline for future global policies,
particularly as they address the divergent outcomes across developed and developing
countries in the RCP scenarios.

Third, there is, as one might expect, considerable controversy about the RCP
scenarios. Some claim that RCP 2.6 is all but impossible since the realized path of
GHGs has exceeded 2.6 by a wide margin since the scenario was initially published.
Others claim that the highest scenario, RCP 8.5, is too extreme to be considered
a “business-as-usual” scenario. The present study makes no claim about which,
if any, is most likely. By design it utilizes all four. Our intention to present a
broad collection of “possible futures” as a way to facilitate comparisons both across
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countries and across time.

Fourth, our study makes projections based on a single model with many limi-
tations outlined in the previous section. Climate uncertainty will produce a wide
quantitative variation across different models, of which ours is only a small part
(Burke, Hsiang, and Miguel, 2015). In our view this calls for caution in interpre-
tation rather than rejection of single-model studies. As with economic modeling
generally, we find a substantial upside in working with a specific IAM that highlights
a few key features — in our case land sink — among the many that determine climate
costs. Our purpose is to isolate incentives and trade offs faced by policymakers that
may be obfuscated when aggregating forecasts across highly differentiated models.

Finally, the present study focuses exclusively on GDP, a flawed indicator of cli-
mate costs. The high growth in output resulting from high emissions scenarios
may, in fact, be consistent with poor socio-economic indicators such as lower life ex-
pectancy, wellness, and leisure, and increases in congestion, population density, and
crime. Even in the context of the model, comparisons are about GDP rather than
payoffs. This simplifies the simulation strategy; deterministic simulations can be
used since shocks enter additively into GDP and wash out in expectation. However,
in terms of welfare the volatility of shocks matter a great deal to a representative
citizen who values consumption smoothing. In welfare calculations, stochastic sim-
ulations that aggregate across payoff paths provide a better indication of true trade
offs within the model. Future work to incorporate broad measures of well being into
climate cost scenarios are well worth the effort.
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7 Appendix

7.1 Derivation of the Optimal Land Use Policies

Due to additively separability under log payoffs, we can drop the noise term €,;; and
the terms c{tos and L; from the derivation of optimal land policy for country i. None
of these terms enter into ¢’s policy function.

Consequently, we also drop the “lan” superscript and the country subscript ¢’
from land consumption i, removals 712", land stock w!® and land sink sl".

Dropping these terms, the structural equations are expressed as

u, = log(yy) + 0log(w,_1 — 14) (29)

Y = Acf(wt_l + St + Tt — Ct)ﬁ (30)

W =w1+8+1—¢ (31)
Now let

S = Etwt_l, Tt = qtWi—1, Gt = €W—1, (32)

The rates ¢;, q;, and e; can potentially vary with .

By equations and ([32),
wr = w1 (1 4+ +q — ) (33)
Given the notation above, the Bellman equation is

U(wi_1) = max {alog(e;) + Blog (1 + g+ € — e ) + Olog(1l — ¢) (34)
+(a+ 4+ 0)log(wi—1) + 8 Upr1(wy)}
7.1.1 Derivation of Optimal Land Carbon Emissions Rate ¢,
The first order condition in e; is
a I5; oU
e 1+0li+q —e Owy

41



Differentiating the value function,

oUu a+p3+0 oU
= g +9 (L4 lii1 + @1 — €141))

@_wt Wi Owy i1
a+p+0 a I5; > 1
= + — — (1 4+l + —e
Wt err1 1+l + @1 — e wt( w1 T e~ Cu)
(second equality is from substituting FOC one period forward.)
(36)
Substituting into the FOC , we obtain
o s
ee 1+0+q—e 5
Wt—1 «
=9 a+pB+60)+ ( — ) 14+l + —e }
We [((5 s €1 LA+l + G — e ( w1 T g = een)
Wy
= > (I + L1 + @1 — €t+1):|

= [(a+5+9)+

w1 (L+ 4+ g — er) €41 14 lip1 + =€

(37)

or

(14l + ) P [(a—i-ﬁ—l—@) (a(1+€t+1 + Q1 — €141) —ﬁ)} (38)

Ct €t+1
[terating forward yields

cltbta—e) 5 _ %(oﬁ—ﬁ—l—ﬁ) (39)

€t

Solving for e; yields

_ al-0)A+6b+q)
“T U _)(at B +o(atB+0)d) (40)

We are not yet done since ¢, is also an endogenous choice by the country.

7.1.2 Derivation of Optimal Land Carbon Removals Rate ¢,

The first order condition in ¢; is

0 b 5% =0 (41)

- +
1—qt 1+€t+qt_€t awt
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which we can rewrite as
0 _ 6] _5 oU
I —gq 1+£t+%_€t_ Ow;

Once more we differentiate the value function,

oU a+p+06 oU

Wr—1 (42)

%o 5 140 _
Bon o + Dors (14 li1 + @1 — €141))
a+pB+0 ( 0 B > 1
— 4 — — (1 4+l + @1 — €
Wy I —qi1 1+l + g1 — e wt( e+ G — er)

(second equality is from substituting FOC one period forward. )
(43)

Substituting into the FOC (42), we obtain

0 B
l—q¢ 14+06+q—e
S et {(04 +6+0)+ — b ) (1 + L1 + o1 — €t+1):|
W 5 =g 1+l + @1 — €4
Wg—1

> (14 i1 + g1 — €t+1)}
(14)

ka+ﬁ+@+

S wa (L4 g —er) 1 —qia 14 lip1 + —€iq

or

01+ 0+ q — e)

—B = [(a+6+0) (9(1+€t“+qt“_et“) —ﬁﬂ (45)

I —q 1 — g1
[terating forward yields
01+l + gt — er) 0
_ 3 = 0 4
= f=—5la+tb+0) (46)

Notice that this looks a lot like Equation . Since the right-hand side of
and are the same, we equate the left hand sides to obtain

0
Qt = 1 — aet (47)

This is an easy equation that relates the optimal choices of ¢; and e;. Substituting
(47) into the equation (40) we obtain

a(l=0)(1+ 46+ (1— Ley))

T A—0a+pP) rolatrBr (48)
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Solving for e; (with a few steps of algebra) we obtain the optimal rate of land
carbon extraction

Finally, substituting into the equation for ¢, i.e., ¢ =1 — get from 1) we
obtain he optimal rate of atmospheric removal:
. 0(1—0)(24+ 4)

- 1- 50
4 at B+ (50)

Multiplying e} and ¢ by w!? gives the resulting optimal consumption and re-

moval policies, ¢ and ry, respectively.

Multiplying both sides of and by the state w;_1, we we obtain

a(l —0)(2wi—1 + s¢)

o= d
. 01 —0)(2wi—1 + s¢)
e a+6+0

7.2 Estimating Equation

We show how the optimal choices in (51)) can generate a simple estimating equation.
Substitute the functions in into the law of motion. This yields

W = W1+ s+ —¢f
B B (1—-0)(+0) (52)
= (1 ot ﬁ T 0 (2wt_1 + St)

Notice that one can separate out the term 2w; ; + s; from the parameters. Our

estimating equation in logs is (ignoring the scale term A, and fossil fuel and labor,

¢/ and Ly, resp.,

log(y:) = alog (;f—ﬁ_f)g) + B log (1 - (1;?5(@:99)) + (o + ) log (2wi—1 + 1)
(53)

So the first two terms on the right-hand side are constants. The second term
has the same coefficient, o + [ as before, and the data is 2w;_; + s; each period.
Equation coincides with Equation once the definitions of the coefficients
and variables are used. One does not need the data on ¢; and r; to estimate Equation

(12).
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7.3 Description of the Data

e Countries. Country data covers 162 countries that are included in at at least
one cluster: Albania, Algeria, Angola, Argentina, Armenia, Australia, Aus-
tria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium,
Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil,
Brunei Darussalam, Bulgaria, Burkina Faso, Burundi, Cabo Verde, Cambodia,
Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia,
Comoros, Congo, Dem. Republic Congo, Costa Rica, Cote d’Ivoire, Croa-
tia, Cuba, Cyprus, Czech Republic, Denmark, Djibouti, Dominican Republic,
Ecuador, Egypt, El Salvador, Equatorial Guinea, Estonia, Ethiopia, Fiji, Fin-
land, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Guatemala,
Guinea, Guinea-Bissau, Guyana, Honduras, Hungary, Iceland, India, Indone-
sia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan,
Kenya, Korea, Rep., Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho,
Liberia, Lithuania, Macedonia FYR, Madagascar, Malawi, Malaysia, Mali,
Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozam-
bique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger,
Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay,
Peru, Philippines, Poland, Portugal, Romania, Russia, Rwanda, Saint Lu-
cia, Saint Vincent and the Grenadines, Samoa, Saudi Arabia, Senegal, Serbia,
Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa,
Spain, Sri Lanka, Sudan, Suriname, Swaziland, Sweden, Switzerland, Tajik-
istan, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turk-
menistan, Uganda, Ukraine, United Arab Emirates, United Kingdom United
States of America, Uruguay, Uzbekistan, Vanuatu, Venezuela, Viet Nam, Zam-
bia, Zimbabwe.

e Units of Measurement. Unless otherwise noted, the units of measurement are
gigatonnes (GtC or 10? metric tonnes) of carbon dioxide equivalent (C02e).
Units of C02e convert all green house gases (CH4 Methane, CO2 Carbon Diox-
ide, N20 Nitrous Oxide, and three fluorinated gases: Hydrofluorocarbons, Per-
fluorocarbons, and Sulfur Hexafluoride) into CO2 by measuring Global Warm-
ing Potential (GWP), a relative measure of how much heat a greenhouse gas
traps in the atmosphere. It compares the “amount of heat trapped by a cer-
tain mass of the gas in question to the amount of heat trapped by a similar
mass of carbon dioxide.” Using Global Warming Potential, one unit of carbon
translates roughly to 3.67 units of CO2.

In all the series below, a length of time is five years (though for some purposes,
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annual rolling five year aggregates are used). Thus, flow data is a five year
aggregated flow. Carbon stock data is the value given in the particular year.
When time periods are quinquennial (5 year intervals), stock data are given for
years at the end of a quinquennial time period, for instance, stock data for the
period 1991-1995 is the stock year 1995. Flow data ending in 1995 aggregates
the annual flows in a quinquennial time period, e.g., the yearly flows from
1991 to 1995. The reason for using 5 year intervals is that FAOSTAT data
conforms to U.N. reporting requirements of five year increments, each date ¢
represents the end of a five year period up to and including the current year.
In particular, the UNCCC reporting procedures require countries to update
their carbon measurement every 5 years, typically in years ending in 0 or 5.
measurements typically occur in years 1990, 2000, 2005, 2010, and 2015. While
FAOSTAT does report annual data, the data in the intervening years appears
to be extrapolated from the quinquennial reports.

In what follows, “t” indexes quinquennial dates 1990, 1995, ...,2015 and “7”
indexes annual dates, 1990,1991,1992,...,...,2015.

o Annual data on five-year aggregated global land sink 5%": The data on global
annual sink s!9" comes from the Le Quere et al.| (2018) linked from the Global
Carbon Project 2018 (GCP 2018). GCP 2018 data is annual. The sink sl
(with 7 representing a period of a year) is “estimated by the difference of the
other terms of the global carbon budget and compared to results of independent
Dynamic Global Vegetation Models forced by observed climate, CO2 and land
cover change (some including nitrogen-carbon interactions)...”m The data used
in for our estimation are five year flows up to and including 7 so that 5" =
Z?:o s-—;. Annual data on 5-year rolling aggregates is needed to obtain large

enough sample sizes for estimation (see Appendix for details).

o Annual global land carbon stock w'™: The global land stock data is annual from

1982 to 2015. For consistency, changes in w!® are from the same source (GCP
2018) as si". The series for w!®™ is then constructed from a benchmark value set
at FAO Forest Carbon stock in the base year 2000. Additions and subtractions
from the base year are then determined annually by land emissions (land use
— land sink) series from GCP 2018 (the same source as for si"), dating back
to 1982. Net land emissions are subtracted forward and added backward from

the base year to obtain an annual series from 1982 to 2015 The annual data

20Le Quere et al. (2016), p. 3.
2INote that a similar series from the FAQ is inadequate. It interpolates between five year periods
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lan

lan “lan Jand sink rate as

is used for constructing the 5 year rolling aggregate s
7 varies annually from 1990-2015.

o Quinquennial country land carbon stocks w'é™: The data at quinquennial inter-

vals from 1990 to 2015 comes from FAOSTAT, the database for the Food and
Agricultural Organization (FAO). FAOSTAT contains data on Forest Carbon
stock in living (above and below ground) biomass for each country and derived
from the FAO Forest Resource Assessments (FAO FRA). The data measures
only living biomass in forests. See http://www.fao.org/faostat/en/#data. Data
on soils, leaf litter is found in FAQO’s Global Forest Resource Assessment 2015
for the single year 2015. Data on biomass on agricultural land is found in
Zomer et al.|(2016) for the years 2000 and 2010. Forest biomass is significantly
larger than agricultural biomass in most countries. In 2010 in the U.S. the agri-
cultural carbon stock is 9.5% of the total. In Brazil, 11.5%. In India, however,
agricultural biomass is 41%.

o Quinquennial, 5-year aggregated country land sink 59": The model posits ab-

sorption efficiency per unit land carbon biomass to be identical across all coun-
try’s stocks, global land sink data is used to compute country-specific sinks per
wlan lan

. With
it—5 Wit—5
the data on land stocks and on the global sinks, the country specific land sink
is constructed.

slan
St

slan
unit carbon biomass. Specifically, for quinquennial dates t, “t— =

e Quinquennial atmospheric GHG stock w{™: Annual data on global GHG atmo-
spheric (CO2e) stocks from 1982 to 2016 are taken from NOAA Earth Systems
Research Laboratory,

https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.

The NOAA report is a time series of atmospheric CO2e levels from the Moana
Loa Observatory. Data is expressed in parts per million by volume (ppm).
To convert from ppm to gigatonne of carbon, the conversion tables of the
Carbon Dioxide Information Analysis Center advise that 1 part per million of
atmospheric CO2e is equivalent to 7.81 Gt CO2e. The GHG concentrations
include non-carbon GHGs contributing to temperature rises that determine
land sink absorption rate. The index t is over quinquennial dates.

from 1990 to 2015 and so has six distinct data points. The constructed series by contrast is annual
data from 1982-2015.
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e Quinquennial, 5-year aggregated fossil fuel emissions {¢

/9°1: Data on fossil fuel
consumption for each country is from the CAIT Climate Data Explorer, 2017,
the database provided by the World Resources Institute, http://cait.wri.org/historical.
From this data we construct five year flows for our estimation. Recall that @ftos

. . ~fos __ 4 fos
is the five year sum: ¢, =3 ¢i% ;.

Quinquennial 5-year aggregated output vy, and quinquennial labor L;: Annual
GDP and labor country data taken from the World Bank database. GDP is in
2015 constant dollars. From this data we construct five year flows for output:
Uit = Z?:o Yi,-—j. Labor is a stock variable and so variable and so L; is the
labor force at quinquennial date ¢.

Notes. Agricultural carbon stock is excluded. Data fromZomer et al| (2016) only
covers two years, 2000 and 2010. In the U.S. agricultural stock was measured by
Zomer to be 6.34 GtCO2e in 2000 and 6.62 Gt CO2e in 2010. Forestry stock in
those two years measured measured 57.66 and 62.64 in those years, resp. Hence
agricultural stock comprised 10% and 9.5% of the total carbon stocks in those years.

7.4 Estimation Details and Results

The derivation of the estimating equation in Appendix 7.2 produces the estimating
equation . In the equation, By is the country-fixed dummy for country i. The
remaining coefficients can be expressed as By,1, Bk, 2, Bi,3 correspond to the cluster
ks in the clustering strategy s. OLS estimates (with country-fixed effects) of these
parameters are obtained in MATLAB for 8 clustering strategies in all. The clustering
strategies are, in order,

1.
2.

Global sample. There is a single k£ with all 162 countries. (Table .

Human Development Index (HDI). k ranges over four clusters are High, Medium
High, Medium Low, and Low development groups (Table .

. HDI binary. This strategy groups High and Medium High HDI clusters to-

gether, and Low and Medium Low clusters together.

OECD Membership. Binary partition. Either includes or excludes country.

. Top 30 GDP countries. Binary partition. Either includes or excludes country.

. Top 30 GHG emitters. Binary partition. Either includes or excludes country.
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Table 5: Estimated Policy-Adjusted Production Coef-
ficients by Binary Human Development Index Cluster.

Dependent Variable - Log GDP

Coefficients High HDI Low HDI
B; Carbon Stock 0.889*** 0.041
(0.103) (0.107)
B, Fossil Fuel 0.870*** 1.037*
(0.090) (0.085)
Bs Labor Force 0.327*** 0.695***
(0.097) (0.103)
Observations 455 355
R? 0.995 0.995
I Statistic 596.8 563.6

Standard errors in parentheses. Symbols *, ** and *** indicate statisti-
cally significant at the 10%, 5%, and 1% levels, respectively.

7. Top 35 Forested countries. Binary partition based on total Gt C in each coun-
try. Either includes or excludes country.

8. Geographic cluster. Six groupings: North America (excluding Mexico). Central
and South America (including Mexico), Europe, Asia, Oceana, Africa.

All data, including membership list for each cluster in each of the 8 strategies is
available upon request.

Table , in the text, reports on results for the global and HDI cluster (strategies
1 and 2 listed above). The results for subsequent 6 clusters are in following tables,

Tables BHIOk

7.5 Details of the Simulations and Figures
7.5.1 Land Sink Estimation

Restricting attention to the quinquennial periods from 1990 to 2015, a reasonable
sample size is obtained by estimating the quinquennial flows annually since 1982.
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Table 6: Estimated Policy-Adjusted Production Coef-
ficients by OECD Membership.

Dependent Variable - Log GDP

Coefficients OECD Non-OECD

B; Carbon Stock 0.723*** 0.153***
(0.099) (0.088)

B, Fossil Fuel 0.093 1.143"*
(0.108) (0.072)

Bs Labor Force 1.251** 0.440***
(0.156) (0.078)

Observations 165 635

R? 0.997 0.994

F' Statistic 934.3 518.8

Standard errors in parentheses. Symbols *, ** and *** indicate statisti-
cally significant at the 10%, 5%, and 1% levels, respectively.

Table 7: Estimated Policy-Adjusted Production Coef-
ficients by Gross Domestic Product.

Dependent Variable - Log GDP

Top 30 GDP Other
Coeflicients Countries Countries
B; Carbon Stock 1.061* 0.324***
(0.134) (0.082)
B, Fossil Fuel 0.827*** 0.986***
(0.089) (0.077)
Bs Labor Force 0.161** 0.701%
(0.107) (0.083)
Observations 150 660
R? 0.991 0.993
F' Statistic 301.5 402.1

World Bank 2016 Rankings. Standard errors in parentheses. Symbols *,
** and *** indicate statistically significant at the 10%, 5%, and 1% levels,
respectively.
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Table 8: Estimated Policy-Adjusted Production Coeffi-
cients by GHG Emissions.

Dependent Variable - Log GDP
Top 30 GHG-Emitting Other

Coefficients Countries Countries
B; Carbon Stock 0.747*** 0.352***
(0.132) (0.083)
B, Fossil Fuel 1.084*** 0.927**
(0.092) (0.077)
B3 Labor Force -0.010 0.764**
(0.113) (0.083)
Observations 145 665
R? 0.990 0.993
F' Statistic 281.8 398.8

EDGAR database, 2017. Standard errors in parentheses. Symbols *, ** and
*** indicate statistically significant at the 10%, 5%, and 1% levels, respectively.

Table 9: Estimated Policy-Adjusted Production Coef-
ficients by Inclusion among Top 35 Forested Countries.

Dependent Variable - Log GDP
Top 35 Forested Other

Coeflicients Countries Countries
B; Carbon Stock 0.263 0.405***
(0.304) (0.078)
B, Fossil Fuel 0.950*** 0.975***
(0.109) (0.079)
Bs Labor Force 0.883*** 0.575"*
(0.142) (0.084)
Observations 175 635
R? 0.997 0.994
F' Statistic 859.5 505.1

Rankings in Global Forest Resources Assessment 2015, FAO. Standard er-
rors in parentheses. Symbols *, ** and *** indicate statistically significant
at the 10%, 5%, and 1% levels, respectively.
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Table 10: Estimated Policy-Adjusted Production Coefficients by Geographic Region.

Dependent Variable - Log GDP

Coefficients NA SA AS EU AF oC

B; Carbon Stock 1.665*** 0.560*** 0.071 1.441*** -0.042 0.158
(0.220) (0.131) (0.167) (0.146) (0.122) (0.208)

B Fossil Fuel 0.970*** 0.774*** 1,417 0.530*** 0.970*** 0.585*
(0.296) (0.106) (0.133) (0.144) (0.100) (0.381)

Bs Labor Force 1.471%* 0.862*** 0.145 -0.040 0.717*** 0.777***
(0.156) (0.117) (0.136) (0.244) (0.120) (0.306)

Observations 10 140 195 195 235 35

R? 0.999 0.999 0.992 0.994 0.994 0.999

F Statistic 31995.6 1957.4 349.3 433.0 448.5 1478.6

Standard errors in parentheses. Symbols *, ** and *** indicate statistically significant at the 10%, 5%, and 1% levels, respec-

tively. NA: North America. SA: South and Central America. AS: Asia. EU: Europe. AF: Africa. OC: Oceania.

Recall that the annual 5-year rolling aggregate for global land sink is defined as

4
glan — Slan (54)

T T—3
=0

for 7 annual. In addition,

zlan

plan = (55)

lan
w'r—5

which is assumed identical across countries.

In other words, pla" is the quinquennial absorption rate based on the land sink
summed over the five year period up to and including annual date 7. 7. We estimate
the analogue of Equation , namely

pr = Mo + MW + (W) + v, (56)

where 7 is the standard period length of a year, and we assume E[v,|w®%] = 0. The
equation system is a rolling aggregate of 5 year flows and end-of-period stocks for
each period 7 where 7 varies yearly from 1987-2016, and the data series for all stocks
start in 1982.

Estimation of is by OLS. The rolling aggregate structure induces serial corre-
lation in errors so that OLS will generally be inefficient. With additional assumptions
on the covariance matrix, can be re-estimated by GLS.
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7.5.2 Data Projections Used in the Simulation

The paths for {g;} and {w!lt"} are simulated for ¢t = 2020, 2025, 2030, ..., 2100 un-
der four RCP scenarios, each corresponding to Global Radiative Forcing levels 2.5,
4.5, 6.0, and 8.5, respectively, in the year 2100. The ingredients required for the
simulation are:

7.5.3 Parameter Estimates from the Model

By, Bi, By, Bs for countries in a given cluster, and 7y, 71, and 75 from the land sink
equation.

7.5.4 Exogenous Forecasts for Series {L;}

Forecasted series {L;;}. Raw data comes from the U.N. Databank and the World
Bank and constructed as follows. The projected labor force for 194 countries, from
2020 to 2100, is based on the following methodology: the UN databank projects
male and female labor until 2100. Then take the 2017 labor force participation
rates of men and women by age ranges 15-64 and 65+ to account for differences
between participation rates between adults and senior population. Participation data
is from the World Bank. Countries are the clustered by HDI. Participation rates of
the 194 countries (by age group and sex) are assumed to converge to the average
participation rate of high income developed countries, based on the assumption that
they had already achieved a steady state of this rate. The convergence year depend
on the classification of the countries. Specifically, High HDI converge in 2020, High
Middle HDI converge in 2040, Low middle HDI converge in 2070 and Low HDI in
2100. Finally, labor force is the product of the participation rate and the projected
projected population for each period.

7.5.5 RCP Forecast Scenarios for {w™}

The RCPs are four independent pathways developed by four individual modeling
groups.

e RCP 2.6: Stipulates peak radiative forcing at &~ 3W/m? before declining to
2.6W/m? by 2100. RCP 2.6 represents mitigation scenarios with full from all
countries to limit the increase of global mean temperature to 2°C. It forecasts
negative energy use emissions growth in the second half of the 21st century due
to a low carbon factor (carbon per energy unit), low energy intensity (energy
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use per dollar income) and low population growth. The economic part assumes
that market share of a certain technology or fuel type depends on costs relative
to competing technologies. Reference: van Vuuren et al.| (2006}, 2007)).

e RCP 4.5: Stabilizes radiative forcing at 4.57/m? in 2100 without ever exceed-
ing that value (no overshooting). The economic model is a cost-minimizing
policy pathway that reaches the target radiative forcing. The cost-minimizing
policy drives changes in the energy system, including shifts to electricity, to
lower emissions energy technologies and to the deployment of carbon capture
and geologic storage technology. Emissions pricing also applies to land use
emissions; as a result, forest lands expand from their present day extent. Ref-
erence: [Clarke et al.| (2007)), citetSmithWigley06, and |Wise et al.| (2009)).

e RCP 6.0. Stabilizes radiative forcing at 6.0W/m? by 2100, without overshoot-
ing. It uses AIM/CGE which models a disaggregated energy system with both
supply and demand sides. The pathway is achieved in a general equilibrium
model with non-forward-looking agents, and with technology-explicit modules
in power sectors. Source: Fujino et al.| (2006) and Hijioka et al.| (2008).

e RCP 8.5. Stipulates a rising radiative forcing pathway leading to 8.5W/m?
in 2100. RCP 8.5 uses the IAM, MESSAGE and forecasts higher carbon fac-
tor, energy intensity, and population growth. The economic model consists
of forward looking, representative-agent optimization to obtain consumption,
savings, and investment. Source: Riahi and Nakicenovic (2007)).

Notes. The database for the RCPs is housed at International Institute for Applied
Systems Analysis (ITASA). According to their sitd?]

“The RCPs, which replace and extend the scenarios used in earlier [IPCC
assessments [prior to AR5], are compatible with the full range of stabiliza-
tion, mitigation, and baseline emission scenarios available in the current
scientific literature.”

The database itself is found at https://tntcat.iiasa.ac.at/RecpDb (accessed 2-20-2019).
The RCPs aggregate at the regional /development level, dividing countries according
to five categories: the OECD 90 (includes the expanded list of OECD countries, the
reforming economies (mostly Eastern Europe), Asia, Middle East and Africa, and
Latin America.

22 http:/ /www.iiasa.ac.at/web/home/research /researchPrograms / TransitionstoNewTechnologies/RCP.en.html,
accessed 2-20-2019.
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Various disclaimers on that site note RCPs are “not new, fully integrated scenarios
(i.e., they are not a complete package of socioeconomic, emissions, and climate pro-
jections).” and “do not represent specific futures with respect to climate policy action
(or no action) or technological, economic, or political viability of specific future path-
ways or climates.” (Characteristics and guidance, https://tntcat.iiasa.ac.at/RepDb.

7.5.6 RCP Data for Series {éf-;os

There are four distinct series each based in one of the four RCPs (see sources for
each RCP).

The construction of 6{;‘)5 is done by estimating the decadal percentage variation of
GHG emissions, excluding LUCF, for each region in each RCP. These growth rates
are then attributed to each country within that region. To account for the different
GHGs we convert each gas into CO2e units using standard conversion factors from
global warming potential as specified in the IPCC 5th Assessment Report.

The equation below for the change A in fossil fuel emissions describes which gases
are included. For region j we define

Ajirop =

CO2 fossil fuel;¢ gep + | total CH4 — (CH4 from grassland and forest burn) +

(. i

LUCF jt,RCP

ther GHGs;
oher St ROP all as CO2e

(57)
Then the éfﬁ‘fRCP of the country ¢ that belong to the region j under the RCP,

1

when t € {2020, 2030, 2040, ..., 2100} is given by:

~fos _ fos Ajivi0,rcr — DjiroP
G jt+10,RCP = Cijt,ROP

Ajtrop

Then for mid-decade dates t € {2025,2035,2045,...,2095} the projection for
fossil fuel is given by:

~fos _ _~fos ~fos
Citrop = QCii 5 pop T (1 — Q)G s rops

with o = 0.5 € (0,1).
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7.5.7 Simulation Algorithm

The basic steps of the simulation are described here. The Appendix fills in the
details.

Step 1. The constructed series for each RCP corresponds to sequences {éﬁfgcp}
and {wg’}%P where ¢ = 2020, 2025, 2030, ..., 2100.

Step 2. Let
Pr.rop = o + 7ATI‘/J?iTs'?,RCP + ﬁZ(wﬁ?,RCPV (58)

denoting the predicted value of the land sink absorption rate under the RCP forecast
{wi%ep} and estimates 7o, 71, and 7y 7 of the land sink sequestration equation.

Step 3. Estimate a parameter, in-sample, from the law of motion of land under
optimal land policy. Combining the stock law of motion in (5)) with optimal land use
policies in ([10]) in the Proposition, one obtains one obtains

Wi = wlgns — e (wlng) + Tl wliny) + Sl

= D, (2ultn; + 5lem) (59)

= Diwii"s (24 pr)
where D; =1 — %%ji) is the model-generated adjustment factor. This is inde-
pendent of ¢. Equazcioil describes the theoretical carbon stock dynamics under
optimal land use. The evolution of w!*® depends on the land carbon adjustment
factor D; derived from land use. The empirical adjustment factor D; from sample
data is

lan
Wit

Wiy (2+7,)
which, unlike the model generated parameter, will generally depend on ¢ due to
shocks.

To be consistent with our earlier assumption that parameters «;, 3;, Vi, 0;, ¢; are
identical within clusters, we average these empirical adjustment factor over four time

periods, 2000, 2005, 2010, 2015, and over all countries in a given cluster k£, using HDI
as our partition. Thus average adjustment factor Dy cluster k is computed as:

D, = (60)

2015
1 § E
Dy, = — b "
4 x #{ iin cluster k } €2000 ;- clusterk t
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The computations of these average adjustment factors across HDI clusters are dis-

played in Table [I1]

Table 11: Mean Adjustment Factors under Optimal Land Policies.
High  Med High Med Low Low
HDI HDI HDI HDI

Adjustment Factor Dy, 0.5196 0.5062 0.4816 0.4727
(0.0477)  (0.0604)  (0.0368) (0.0598)

Standard deviations (not standard errors) in parentheses.

Step 4. Generate the RCP forecasted series {&/hp} recursively using the equa-
tion

lan

lan =
wirrep = Diwi”s rep 2 + Py rep) (62)
starting from ¢ — 5 = 2015, with each ¢ representing a quinquennial time period.

Step 5.  Combine series the {wl{hp}, {zt rep ), with the two series { L, } {65?;0 P
with estimates By, By, Bs, Bs from the reduced form equation to generate

{Yt.rcp}-
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7.5.8 Simulation Figures
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Figure 11: Land Carbon Stock by IPCC-RCP Scenario under HDI Clustering.
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Figure 12: Quinquennially Aggregated GDP by IPCC-RCP Scenario under HDI
Clustering.
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Figure 13: Global GDP by Cluster Strategy, Aggregated Quinquennially and Across

Clusters.
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